
OIO Service Oriented Infrastructure  

 
 
 
 

OIO Service Oriented Infrastructure 
 
 
 

RASP Library for Java  

Version 2.0.0 

Tutorials



OIO Service Oriented Infrastructure  

 2 

Contents 
 
1 Introduction ................................................................................................................. 3 

2 Prerequisites................................................................................................................. 4 

3 Lesson: Creating a RASP client and service ................................................................... 5 

3.1 The example clients ................................................................................................ 5 

3.1.1 Mail transport configuration ............................................................................. 6 

3.2 The service example ................................................................................................ 7 

3.2.1 Mail transport configuration ............................................................................. 8 

4 Lesson: Adapting the code for your own use .................................................................. 9 

4.1 Creating a Java key store for your NemHandel function certificate ........................... 9 

4.2 Configuring the examples to run on your own key store ........................................... 9 



OIO Service Oriented Infrastructure  

 3 

 

1 Introduction 
The OIOSI RASP Library for Java is a java based toolkit for implementation of RASP business 
applications.  
 
This distribution is Version 2.0.0 
 
The distribution is part of the OIOSI work for exchanging business documents in a secure 
and reliable way using the internet. See http://www.digst.dk/Loesninger-og-
infrastruktur/NemHandel/For-it-udviklere for more information. 
 
The framework can be downloaded from 
http://digitaliser.dk/group/405442/resources/type/150019. 
 
The intended audience is developers who want to integrate the RASP framework into their 
own application. 
 
Before reading this document, please take the time to read the following documents: 

• OIOSI RASP Library for Java Release Notes.doc 

• OIOSI RASP Library for Java Source - Installation Guide.doc 
 

 



OIO Service Oriented Infrastructure  

 4 

2 Prerequisites 
 
These tutorials suppose you are working with Eclipse, Tomcat 6 or later and are running Ant 
from within Eclipse.  
 
Before starting, make sure you have gone through the installation document for the RASP 
library.  



OIO Service Oriented Infrastructure  

 5 

3 Lesson: Creating a RASP client and service  
 
This tutorial assumes that the examples projects have been imported into Eclipse. 
 

3.1 The example clients 
The example client project has the following structure: 

 
 
 
The source folder of the client examples contains two applications, the Local test client, and 
a full OIOSI RASP client.  
 
Our local test client sends a UBL document to a service deployed locally by simply giving the 
RASP framework the correct address and server side certificate to use. 
 
The full RASP client however, fetches a test document, finds the endpoint reference within it, 
looks it up in the UDDI registry, downloads the server side certificate and then sends the 
document according to the data just found. By default the test document has an EAN that is 
registered to a RASP test server run by Digitaliseringsstyrelsen. 
 
The full client runs through the following steps 

1. Load a document 
2. Validate the document 
3. Wrap the document in a SOAP message and add the custom RASP headers 
4. Make an UDDI lookup to find the service address 
5. Use information from the UDDI response to download the server certificate via LDAP 
6. Validate the certificate downloaded against an OCSP server 
7. Sends it to a service. 
 

All of these steps are explained in further detail as comments within the code. 
 
It is strongly recommended that you read these comments before implementing your own 



OIO Service Oriented Infrastructure  

 6 

RASP client application, since they describe what SOAP headers to add, and what validation 
to make to ensure a truly secure communication. 

 

3.1.1 Mail transport configuration 
The mail transport is configured using the following two files: 

• cfg/axis2.xml 

• cfg/RaspConfiguration.xml 
 
axis2.xml contains the configuration of the SMTP server to use. This configuration can be 
found in the “Mail Transport Sender” configuration segment. 
 
RaspConfiguration.xml contains the configuration of POP3 server to use. This configuration 
is found in the “EmailTransportUserConfig” configuration section. 



OIO Service Oriented Infrastructure  

 7 

3.2 The service example 
The example service project structure is shown below: 

 
 
The service example is set up as a simple web service, which validates the incoming 
document and replies with an empty message.  
 
The service can by run directly from eclipse by choosing “Run On Server”, or it can by 
exported as an WAR file. The WAR file can be deployed on a Tomcat server by copying it into 
the Tomcat home/webapps folder, and it should automatically be deployed.  
 
To test the service out, enter the following address into your web browser 
 
 http://localhost:8080/dk.gov.oiosi.examples.service/ 
 
(assuming you have set up Tomcat to run on port 8080, and the webapp name is 
dk.gov.oiosi.examples.service). 
 



OIO Service Oriented Infrastructure  

 8 

On this page one can click “List Axis services” and a presentation of the operations offered by 
the service will be shown: 

 

 
 
To further test the service, run the LocalTestClient application as described above. The client 
should send documents to the following address: 
 
http://localhost:8080/dk.gov.oiosi.examples.service/services/TestService/nemhandel 
 

3.2.1 Mail transport configuration 
The mail transport is configured using the following two files: 

• WebContent/WEB-INF/services/TestService/META-INF/services.xml  

• WebContent/WEB-INF/conf/axis2.xml 
 
services.xml contains the POP3 server configuration, while axis2.xml contains the SMTP 
server configuration just like in the client example.



OIO Service Oriented Infrastructure  

 9 

4 Lesson: Adapting the code for your own use 
 
To use NemHandel you will need a function certificate. A guide (in Danish) for requesting one 
can be found here 

https://www.nets-
danid.dk/produkter/oevrige_signaturer/funktionssignatur/bestil_funktionssignatur/  
 

4.1 Creating a Java key store for your NemHandel 
function certificate 

 
To make your own keystore, you’ll need to import the complete certificate chain, which 
means that for a function certificate store you will also have to import the TDC OCES Root 
certificate. You can find the root certificate here: 
 
https://www.certifikat.dk/export/sites/dk.certifikat.oc/da/download/rodcertifikater/ocesca
.crt 
 
When you have your own certificate and the root, rename the root cert to have a filename 
ending .cer, and run the following commands: 
 
keytool -importcert -keystore keyStore.jks -alias o cesca -file ocesca.cer 
keytool –importcert –keystore keyStore.jks –alias f unc –file functional.cer  
 

4.2 Configuring the examples to run on your own key 
store 

 
Start by running the following command: 
 
keytool –list –keystore keyStore.jks 
 
to list the certificates in your store. Your certificate has been assigned an alias (the name 
given in the output). Remember this alias for later use. 

 
The keystore used is set up in the dk.gov.oiosi.examples.service/WebContent/WEB-
INF/services/TestService/META-INF/services.xml and 
dk.gov.oiosi.examples.client/cfg/policy.xml for the service and client respectively. 
 
In each of these files, find the <ramp:RampartConfig> configuration element. Rampart is the 
WS-Security implementation we are using, so we will tell it where to find our store by 
altering  
 

<ramp:user>  
 
to our alias from above 

 
 
<ramp:signatureCrypto> 
         <ramp:property name="org.apache.ws.security.crypto.merlin.file"> 
 
 To the path were our key store can be found 



OIO Service Oriented Infrastructure  

 10 

 
 
<ramp:signatureCrypto> 

<ramp:property name="org.apache.ws.security.crypto.merlin.keystore.password"> 
 
To the password we use for our crypto store. 

 
 
Whenever Rampart is in need of a private key, it will call the 
dk.firma.klient.webservice.PWCallback class found in both the client and the service 
examples. Alter the code in this class to return the password for your private key. 
 


